The illustration depicts Bacteroides thetaiotaomicron (white) living on mammalian cells in the gut (large pink cells coated in microvilli) and being activated by exogenously added chemical signals (small green dots) to express specific genes, such as those encoding light-generating luciferase proteins (glowing bacteria).
Image by: Janet Iwasa
The “friendly” bacteria inside our digestive systems are being given an upgrade, which may one day allow them to be programmed to detect and ultimately treat diseases such as colon cancer and immune disorders.
In a paper published today in the journal Cell Systems, researchers at MIT unveil a series of sensors, memory switches, and circuits that can be encoded in the common human gut bacterium Bacteroides thetaiotaomicron.
These basic computing elements will allow the bacteria to sense, memorize, and respond to signals in the gut, with future applications that might include the early detection and treatment of inflammatory bowel disease or colon cancer.
Researchers have previously built genetic circuits inside model organisms such as E. coli. However, such strains are only found at low levels within the human gut, according to Timothy Lu, an associate professor of biological engineering and of electrical engineering and computer science, who led the research alongside Christopher Voigt, a professor of biological engineering at MIT.
“We wanted to work with strains like B. thetaiotaomicron that are present in many people in abundant levels, and can stably colonize the gut for long periods of time,” Lu says.
The team developed a series of genetic parts that can be used to precisely program gene expression within the bacteria. “Using these parts, we built four sensors that can be encoded in the bacterium’s DNA that respond to a signal to switch genes on and off inside B. thetaiotaomicron,” Voigt says.
These can be food additives, including sugars, which allow the bacteria to be controlled by the food that is eaten by the host, Voigt adds.
Bacterial “memory”
To sense and report on pathologies in the gut, including signs of bleeding or inflammation, the bacteria will need to remember this information and report it externally. To enable them to do this, the researchers equipped B. thetaiotaomicron with a form of genetic memory. They used a class of proteins known as recombinases, which can record information into bacterial DNA by recognizing specific DNA addresses and inverting their direction.
The researchers also implemented a technology known as CRISPR interference, which can be used to control which genes are turned on or off in the bacterium. The researchers used it to modulate the ability of B. thetaiotaomicron to consume a specific nutrient and to resist being killed by an antimicrobial molecule.
The researchers demonstrated that their set of genetic tools and switches functioned within B. thetaiotaomicron colonizing the gut of mice. When the mice were fed food containing the right ingredients, they showed that the bacteria could remember what the mice ate.
Expanded toolkit
The researchers now plan to expand the application of their tools to different species of Bacteroides. That is because the microbial makeup of the gut varies from person to person, meaning that a particular species might be the dominant bacteria in one patient, but not in others.
“We aim to expand our genetic toolkit to a wide range of bacteria that are important commensal organisms in the human gut,” Lu says.
The concept of using microbes to sense and respond to signs of disease could also be used elsewhere in the body, he adds.
In addition, more advanced genetic computing circuits could be built upon this genetic toolkit in Bacteroides to enhance their performance as noninvasive diagnostics and therapeutics.
“For example, we want to have high sensitivity and specificity when diagnosing disease with engineered bacteria,” Lu says. “To achieve this, we could engineer bacteria to detect multiple biomarkers, and only trigger a response when they are all present.”
Read more: Researchers develop basic computing elements for bacteria
The Latest on: Bacterial computing
via Google News
The Latest on: Bacterial computing
- 70 deaths, many wasted organs are blamed on transplant system errorson August 3, 2022 at 11:30 am
The errors included failures to identify disease in donor kidneys, hearts and livers, as well as mix-ups in matching blood types and delays in blood and urine tests that were not completed before ...
- Dead-bug biofilm creates powerful evaporation batteryon August 2, 2022 at 10:19 pm
Wearable electronics could soon be powered by dead microbes. New research out of UMass Amherst has demonstrated a biofilm that generates electricity from sweat, harnessing the corpses of dead bacteria ...
- The bacteria powering a truly green revolution in personal electronicson August 2, 2022 at 2:03 pm
“This is a very exciting technology,” says Xiaomeng Liu, graduate student in electrical and computer engineering in UMass Amherst’s College of Engineering and the paper’s lead author. “It is real ...
- Algorithm That Detects Sepsis Cut Deaths by Nearly 20 Percenton August 1, 2022 at 4:04 am
Over two years, a machine-learning program warned thousands of health care providers about patients at high risk of sepsis, allowing them to begin treatments nearly two hours sooner ...
- Not just bread and beer: Microbes can ferment carbon dioxide to make fuel tooon July 28, 2022 at 6:21 am
Bakers ferment dough for a well-risen loaf of bread. Brewers ferment wheat and barley for a smooth, malty glass of beer. And as nature's foremost bakers and brewers, some microbes can do even more.
- Spectrometry Reveals Extent of Microbial Growth in Lakes Caused by Plasticon July 28, 2022 at 3:50 am
A recent paper published in Nature Communications reveals that plastic leachate is more chemically different, bioavailable, and promotes more microbial growth in water than natural organic matter.
- Can math help us understand the gut system of obese people?on July 27, 2022 at 5:00 pm
Obesity has become a global epidemic and there is no effective cure yet. Some evidence indicates that the bacterial composition of our intestinal system plays a role. A new research project will use ...
- Can bacteria eat plastic? Hunt is on for mutants to devour waste on an industrial scaleon July 27, 2022 at 4:01 pm
No one will ever know quite how it happened, or exactly when. But here is one plausible explanation for how bacteria in a Japanese recycling plant started eating plastic. Each day, plastic bottles ...
- 10 Household Objects That Are 'Dirtier' Than a Toilet Seaton July 27, 2022 at 8:45 am
X is dirtier than a toilet seat!” is practically an internet sub-genre for a good reason. Headlines like “Your Keyboard: Dirtier Than a Toilet. Lifehacker has long maintained that sponges, on the ...
- Researchers discovered thousands of unknown bacteria in Hawaiian caveson July 24, 2022 at 5:01 am
Scientists recently discovered thousands of ancient unknown bacteria lurking in Hawaii's lava caves and geothermal vents.
via Bing News