
Stefanie Tellex “The whole of Minecraft is what we refer to as ‘A.I. complete.’ If you can do all of Minecraft you could solve anything.” Photo: Mike Cohea/Brown University
Researchers from Brown University are developing a new algorithm to help robots better plan their actions in complex environments. It’s designed to help robots be more useful in the real world, but it’s being developed with the help of a virtual world — that of the video game Minecraft.
Basic action planning, while easy for humans, is a frontier of robotics. Part of the problem is that robots don’t intuitively ignore objects and actions that are irrelevant to the task at hand. For example, if someone asked you to empty the trashcan in the kitchen, you would know there’s no need to turn on the oven or open the refrigerator. You’d go right to the trashcan.
Robots, however, lack that intuition. Most approaches to planning consider the entire set of possible objects and actions before deciding which course to pursue. In other words, a robot might actually consider turning on the oven as part of its planning process for taking out the trash. In complex environments, this leads to what computer scientists refer to as the “state-space explosion” — an array of choices so large that it boggles the robot mind.
“It’s a really tough problem,” said Stefanie Tellex, assistant professor of computer science at Brown. “We want robots that have capabilities to do all kinds of different things, but then the space of possible actions becomes enormous. We don’t want to limit the robot’s capabilities, so we have to find ways to shrink the search space.”
The algorithm that Tellex and her students are developing does just that. David Abel, a graduate student in Tellex’s lab, led the work and will present it this week at the International Conference on Automated Planning and Scheduling.
Discovering the likely path
The algorithm augments standard robot planning algorithms using “goal-based action priors” — sets of objects and actions in a given space that are most likely to help an agent achieve a given goal. The priors for a given task can be supplied by an expert operator, but they can also be learned by the algorithm itself through trial and error.
The game Minecraft, as it turns out, provided an ideal world to test how well the algorithm learned action priors and implemented them in the planning process. For the uninitiated, Minecraft is an open-ended game, where players gather resources and build all manner of structures by destroying or stacking 3-D blocks in a virtual world. At over 100 million registered users, it’s among the most popular video games of all time.
“Minecraft is a really good a model of a lot of these robot problems,” Tellex said. “There’s a huge space of possible actions somebody playing this game can do, and it’s really cheap and easy to collect a ton of training data. It’s much harder to do that in the real world.”
Tellex and her colleagues started by constructing small domains, each just a few blocks square, in a model of Minecraft that the researchers developed. Then they plunked a character into the domain and gave it a task to solve — perhaps mining some buried gold or building a bridge to cross a chasm. The agent, powered by the algorithm, then had to try different options in order to learn the task’s goal-based priors — the best actions to get the job done.
“It’s able to learn that if you’re standing next to a trench and you’re trying to walk across, you can place blocks in the trench. Otherwise don’t place blocks,” Tellex said. “If you’re trying to mine some gold under some blocks, destroy the blocks. Otherwise don’t destroy blocks.”
After the algorithm ran through a number of trials of a given task to learn the appropriate priors, the researchers moved to a new domain that it had never seen before to see if it could apply what it learned. Indeed, the researchers showed that, armed with priors, their Minecraft agents could solve problems in unfamiliar domains much faster than agents powered by standard planning algorithms.
Having honed the algorithm in virtual worlds, the researchers then tried it out in a real robot. They used the algorithm to have a robot help a person in the task of baking brownies. The algorithm was supplied with several action priors for the task. For example, one action prior let the robot know that eggs often need to be beaten with a whisk. So when a carton of eggs appears in the robot’s workspace, it is able to anticipate the cook’s need for a whisk and hand him one.
In light of the results, Tellex says she sees goal-based action priors as a viable strategy to help robots cope with the complexities of unstructured environments — something that will be important as robots continue to move out of controlled settings and into our homes.
The work also shows the potential of virtual spaces like Minecraft in developing solutions for real-world robots and other artificial agents. “I think it’s going to provide a way for very rapid iteration for algorithms that we can then run in our robots and have some confidence they’re going to work,” Tellex said.
Read more: Using Minecraft to unboggle the robot mind
The Latest on: Robot planning algorithms
[google_news title=”” keyword=”Robot planning algorithms” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]
via Google News
The Latest on: Robot planning algorithms
- Hyundai Motor Group Robots Get Rolling with Pilot Programs to Advance Last-mile Deliveryon January 9, 2023 at 1:35 am
Hyundai Motor Group (the Group) has started two pilot delivery service programs using autonomous robots based on its Plug & Drive (PnD) modular platform ...
- More businesses are expected to integrate artificial intelligence technology into their operations and decision-making processes in 2023.on January 6, 2023 at 1:11 pm
More businesses are expected to integrate artificial intelligence technology into their operations and decision-making processes in 2023.
- ‘Consciousness’ in Robots Was Once Taboo. Now It’s the Last Word.on January 6, 2023 at 6:30 am
The pursuit of robot consciousness may be humankind’s next moonshot. But it comes with a slurry of difficult questions.
- Pepper-picking robot moves through crops on overhead wireson January 5, 2023 at 1:54 pm
According to Japanese robotics firm Agrist, there's a shortage of farm workers in that country, resulting in lower yields than would otherwise be possible. The company is offering a partial solution ...
- Siemens, Comau collaborate on Sinumerik Run MyRoboton January 4, 2023 at 11:16 am
Siemens has entered into a cooperative agreement with Comau to offer their jointly engineered product the Sinumerik Run MyRobot / DirectControl.
- NVIDIA upgrades Isaac Sim robotics simulation toolon January 4, 2023 at 10:09 am
New features include cloud accessibility, support for ROS 2 Humble and Windows, improved motion generation extension for robot arms and the ability to add human characters to simulation environments.
- Planning Algorithmson January 1, 2023 at 6:06 am
This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms. The treatment is centered on robot motion ...
- What Are The Future Disruptive Trends In A Volatile 2023on December 29, 2022 at 3:06 pm
The year 2023 is set to be revolutionary for technology, with many disruptive trends expected to reshape how businesses function and how people interact with each other. From metaverse virtual ...
- Autonomous Vehicles Reality Check Part 3: Robots Moving Freighton December 28, 2022 at 1:07 pm
Trucking use cases suitable for automated driving are rapidly proliferating. In this final installment of my Autonomous Vehicles Reality Check series, here's an in-depth run-down and outlook.
via Bing News