A photograph of the completed BGA trap assembly. The trap chip is at the center, sitting atop the larger interposer chip that fans out the wiring. The trap chip surface area is 1mm x 3mm, while the interposer is roughly 1 cm square. CREDIT: D. Youngner, Honeywell
Quantum computers are in theory capable of simulating the interactions of molecules at a level of detail far beyond the capabilities of even the largest supercomputers today. Such simulations could revolutionize chemistry, biology and material science, but the development of quantum computers has been limited by the ability to increase the number of quantum bits, or qubits, that encode, store and access large amounts of data.
In a paper appearing this week in the Journal of Applied Physics, from AIP Publishing, a team of researchers at Georgia Tech Research Institute and Honeywell International have demonstrated a new device that allows more electrodes to be placed on a chip — an important step that could help increase qubit densities and bring us one step closer to a quantum computer that can simulate molecules or perform other algorithms of interest.
“To write down the quantum state of a system of just 300 qubits, you would need 2^300 numbers, roughly the number of protons in the known universe, so no amount of Moore’s Law scaling will ever make it possible for a classical computer to process that many numbers,” said Nicholas Guise, who led the research. “This is why it’s impossible to fully simulate even a modest sized quantum system, let alone something like chemistry of complex molecules, unless we can build a quantum computer to do it.”
While existing computers use classical bits of information, quantum computers use “quantum bits” or qubits to store information. Classical bits use either a 0 or 1, but a qubit, exploiting a weird quantum property called superposition, can actually be in both 0 and 1 simultaneously, allowing much more information to be encoded. Since qubits can be correlated with each other in a way that classical bits cannot, they allow a new sort of massively parallel computation, but only if many qubits at a time can be produced and controlled. The challenge that the field has faced is scaling this technology up, much like moving from the first transistors to the first computers.
Creating the Building Blocks for Quantum Computing
One leading qubit candidate is individual ions trapped inside a vacuum chamber and manipulated with lasers. The scalability of current trap architectures is limited since the connections for the electrodes needed to generate the trapping fields come at the edge of the chip, and their number are therefore limited by the chip perimeter.
The GTRI/Honeywell approach uses new microfabrication techniques that allow more electrodes to fit onto the chip while preserving the laser access needed.
The team’s design borrows ideas from a type of packaging called a ball grid array (BGA) that is used to mount integrated circuits. The ball grid array’s key feature is that it can bring electrical signals directly from the backside of the mount to the surface, thus increasing the potential density of electrical connections.
The researchers also freed up more chip space by replacing area-intensive surface or edge capacitors with trench capacitors and strategically moving wire connections.
The space-saving moves allowed tight focusing of an addressing laser beam for fast operations on single qubits. Despite early difficulties bonding the chips, a solution was developed in collaboration with Honeywell, and the device was trapping ions from the very first day.
The team was excited with the results. “Ions are very sensitive to stray electric fields and other noise sources, and a few microns of the wrong material in the wrong place can ruin a trap. But when we ran the BGA trap through a series of benchmarking tests we were pleasantly surprised that it performed at least as well as all our previous traps,” Guise said.
Working with trapped ion qubits currently requires a room full of bulky equipment and several graduate students to make it all run properly, so the researchers say much work remains to be done to shrink the technology. The BGA project demonstrated that it’s possible to fit more and more electrodes on a surface trap chip while wiring them from the back of the chip in a compact and extensible way. However, there are a host of engineering challenges that still need to be addressed to turn this into a miniaturized, robust and nicely packaged system that would enable quantum computing, the researchers say.
In the meantime, these advances have applications beyond quantum computing.
Read more:Â New Chip Architecture May Provide Foundation for Quantum Computer
The Latest on: Quantum Computer
via Google News
The Latest on: Quantum Computer
- Norwich University to establish $4M AI and quantum computing centeron May 27, 2022 at 12:48 pm
The private military college is already a leader in cybersecurity education and now it’s getting $4-million from the federal appropriations bill to expand its efforts.
- Is Quantum Computing a Threat to Blockchains?on May 27, 2022 at 7:01 am
"Money Reimagined" dives into the question of quantum computing's impact on blockchains as both innovations rapidly advance. Joining hosts Michael Casey and Sheila Warren at the World Economic Forum's ...
- Quantum Computing Market Projected to Reach $1,765 million by 2026on May 27, 2022 at 6:30 am
According to MarketsandMarkets™, the "Quantum Computing Market by Offering (Systems and Services), Deployment (On Premises and Cloud Based), Application, Technology, ...
- Why Taiwan's success in semiconductors is not helping its quantum computer tech researchon May 27, 2022 at 12:18 am
The year 2022 looks poised to become a breakthrough year for quantum computer hardware. But Taiwan, where half of the world's chips are manufactured, is ironically lagging far behind competitors ...
- Quantinuum commercializes quantum-computing platform for chemistson May 26, 2022 at 3:16 pm
Quantinuum LLC, a Broomfield company newly spun out of Honeywell International Inc., has started InQuanto, a quantum-computing platform for chemists.
- #TECH: IBM showcases potential of quantum computingon May 26, 2022 at 8:18 am
IBM is bullish about the technological breakthroughs quantum computing could bring to the world of business and humanity.
- From Quantum Computers To Digital Security: The 30 Under 30 Asia Entrepreneurs Innovating In Enterprise Technologyon May 25, 2022 at 2:00 pm
Meet the entrepreneurs on the 30 Under 30 Enterprise Technology list who are working to enable quantum computers to take off and using AI to double down on cyber security.
- Keynotes, Tutorials, and Workshops Announced for IEEE International Conference on Quantum Computing and Engineering, September 2022on May 25, 2022 at 10:34 am
IEEE Quantum Week includes presentations by IBM Quantum, Quantinuum, Quantum Machines, and MicrosoftLOS ALAMITOS, Calif., May 25, 2022 ...
- Error-free quantum computing gets realon May 25, 2022 at 9:23 am
In modern computers, errors during processing and storage of information have become a rarity due to high-quality fabrication. However, for critical applications, where even single errors can have ...
- A quantum computer could catch its own errors on any calculationon May 25, 2022 at 8:00 am
A set of 16 qubits has been arranged so that they may be able to run any calculation error-free -- a crucial step toward making quantum computers outpace traditional ones ...
via Bing News