This break-through artificial photosynthesis system has four general components: (1) harvesting solar energy, (2) generating reducing equivalents, (3) reducing CO2 to biosynthetic intermediates, and (4) producing value-added chemicals.
Berkeley Lab Researchers Perform Solar-powered Green Chemistry with Captured CO2
A potentially game-changing breakthrough in artificial photosynthesis has been achieved with the development of a system that can capture carbon dioxide emissions before they are vented into the atmosphere and then, powered by solar energy, convert that carbon dioxide into valuable chemical products, including biodegradable plastics, pharmaceutical drugs and even liquid fuels.
Scientists with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley have created a hybrid system of semiconducting nanowires and bacteria that mimics the natural photosynthetic process by which plants use the energy in sunlight to synthesize carbohydrates from carbon dioxide and water. However, this new artificial photosynthetic system synthesizes the combination of carbon dioxide and water into acetate, the most common building block today for biosynthesis.
“We believe our system is a revolutionary leap forward in the field of artificial photosynthesis,” says Peidong Yang, a chemist with Berkeley Lab’s Materials Sciences Division and one of the leaders of this study. “Our system has the potential to fundamentally change the chemical and oil industry in that we can produce chemicals and fuels in a totally renewable way, rather than extracting them from deep below the ground.”
Yang, who also holds appointments with UC Berkeley and the Kavli Energy NanoSciences Institute (Kavli-ENSI) at Berkeley, is one of three corresponding authors of a paper describing this research in the journal Nano Letters. The paper is titled “Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals.” The other corresponding authors and leaders of this research are chemists Christopher Chang and Michelle Chang. Both also hold joint appointments with Berkeley Lab and UC Berkeley. In addition, Chris Chang is a Howard Hughes Medical Institute (HHMI) investigator. (See below for a full list of the paper’s authors.)
The more carbon dioxide that is released into the atmosphere the warmer the atmosphere becomes. Atmospheric carbon dioxide is now at its highest level in at least three million years, primarily as a result of the burning of fossil fuels. Yet fossil fuels, especially coal, will remain a significant source of energy to meet human needs for the foreseeable future. Technologies for sequestering carbon before it escapes into the atmosphere are being pursued but all require the captured carbon to be stored, a requirement that comes with its own environmental challenges.
The artificial photosynthetic technique developed by the Berkeley researchers solves the storage problem by putting the captured carbon dioxide to good use.
“In natural photosynthesis, leaves harvest solar energy and carbon dioxide is reduced and combined with water for the synthesis of molecular products that form biomass,” says Chris Chang, an expert in catalysts for carbon-neutral energy conversions. “In our system, nanowires harvest solar energy and deliver electrons to bacteria, where carbon dioxide is reduced and combined with water for the synthesis of a variety of targeted, value-added chemical products.”
By combining biocompatible light-capturing nanowire arrays with select bacterial populations, the new artificial photosynthesis system offers a win/win situation for the environment: solar-powered green chemistry using sequestered carbon dioxide.
Read more: Major Advance in Artificial Photosynthesis Poses Win/Win for the Environment
The Latest on: Artificial Photosynthesis
via Google News
The Latest on: Artificial Photosynthesis
- Artificial Photosynthesis Market Size, Future Analysis & Opportunity Outlook 2030on May 17, 2022 at 5:58 pm
Research Nester published a report titled “Artificial Photosynthesis Market : Global Demand Analysis & Opportunity Outlook 2030″ ...
- Bacterial biofilms facilitate biocompatible bio-abiotic interfaces for semi-artificial photosynthesison May 15, 2022 at 7:06 am
Semi-artificial photosynthesis integrates the high selectivity of living biosystems and the broad-range light-harvesting of semi-conductive materials, which enables sustainable light-driven ...
- Artificial Photosynthesis Market Estimated to Experience a Hike in Growth by 2031on May 8, 2022 at 10:49 pm
Snapshot The growing need for clean energy around the globe due to the depleting non-renewable resources may trigger the ...
- The Worldwide Artificial Photosynthesis Industry is Expected to Reach $185 Million by 2030 - ResearchAndMarkets.comon May 7, 2022 at 8:36 pm
DUBLIN, April 19, 2022--(BUSINESS WIRE)--The "Worldwide Artificial Photosynthesis Industry to 2030" report has been added to ResearchAndMarkets.com's offering. The artificial photosynthesis market ...
- Artificial Photosynthesis Market - Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2021-2031on May 6, 2022 at 12:28 am
Artificial Photosynthesis Market - Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2021-2031 ...
- Bacterial Enzyme Converts CO2 Into Carbon Compounds 20x Faster Than Photosynthesison May 5, 2022 at 6:48 am
Researchers discover that a spot of molecular glue and a timely twist help a bacterial enzyme convert carbon dioxide into carbon compounds 20 times faster than plant enzymes do during photosynthesis.
- Artificial Photosynthesis Market by Application, Technology and Region - Global Forecast to 2030on April 22, 2022 at 3:03 am
CONTACT: ResearchAndMarkets.com Laura Wood, Senior Press Manager [email protected] For E.S.T Office Hours Call 1-917-300-0470 For U.S./CAN Toll Free Call 1-800-526-8630 For GMT Office ...
- Artificial Photosynthesis Market by Application, Technology and Region - Global Forecast to 2030on April 21, 2022 at 7:43 pm
The "Artificial Photosynthesis Market by Application (Hydrocarbon, Hydrogen, Chemicals), Technology (Co-Electrolysis, Photo-Electro Catalysis, Nanotechnology, Hybrid Process), Region (North America, ...
- Global Artificial Photosynthesis Market (2022 to 2030) - Featuring Engie, Panasonic and Toshiba Among Otherson April 21, 2022 at 4:32 am
DUBLIN, April 21, 2022 /PRNewswire/ -- The "Global Artificial Photosynthesis Market - Forecast to 2030" report has been added to ResearchAndMarkets.com's offering. The artificial photosynthesis ...
via Bing News