
These scanning electron microscopy images, taken at different magnifications, show the structure of new hydrogels made of nanoparticles interacting with long polymer chains.
Courtesy of the researchers
Self-healing gel can be injected into the body and act as a long-term drug depot
Scientists are interested in using gels to deliver drugs because they can be molded into specific shapes and designed to release their payload over a specified time period. However, current versions aren’t always practical because must be implanted surgically.
To help overcome that obstacle, MIT chemical engineers have designed a new type of self-healing hydrogel that could be injected through a syringe. Such gels, which can carry one or two drugs at a time, could be useful for treating cancer, macular degeneration, or heart disease, among other diseases, the researchers say.
The new gel consists of a mesh network made of two components: nanoparticles made of polymers entwined within strands of another polymer, such as cellulose.
“Now you have a gel that can change shape when you apply stress to it, and then, importantly, it can re-heal when you relax those forces. That allows you to squeeze it through a syringe or a needle and get it into the body without surgery,” says Mark Tibbitt, a postdoc at MIT’s Koch Institute for Integrative Cancer Research and one of the lead authors of a paper describing the gel in Nature Communications on Feb. 19.
Koch Institute postdoc Eric Appel is also a lead author of the paper, and the paper’s senior author is Robert Langer, the David H. Koch Institute Professor at MIT. Other authors are postdoc Matthew Webber, undergraduate Bradley Mattix, and postdoc Omid Veiseh.
Heal thyself
Scientists have previously constructed hydrogels for biomedical uses by forming irreversible chemical linkages between polymers. These gels, used to make soft contact lenses, among other applications, are tough and sturdy, but once they are formed their shape cannot easily be altered.
The MIT team set out to create a gel that could survive strong mechanical forces, known as shear forces, and then reform itself. Other researchers have created such gels by engineering proteins that self-assemble into hydrogels, but this approach requires complex biochemical processes. The MIT team wanted to design something simpler.
“We’re working with really simple materials,” Tibbitt says. “They don’t require any advanced chemical functionalization.”
The MIT approach relies on a combination of two readily available components. One is a type of nanoparticle formed of PEG-PLA copolymers, first developed in Langer’s lab decades ago and now commonly used to package and deliver drugs. To form a hydrogel, the researchers mixed these particles with a polymer — in this case, cellulose.
Each polymer chain forms weak bonds with many nanoparticles, producing a loosely woven lattice of polymers and nanoparticles. Because each attachment point is fairly weak, the bonds break apart under mechanical stress, such as when injected through a syringe. When the shear forces are over, the polymers and nanoparticles form new attachments with different partners, healing the gel.
Using two components to form the gel also gives the researchers the opportunity to deliver two different drugs at the same time. PEG-PLA nanoparticles have an inner core that is ideally suited to carry hydrophobic small-molecule drugs, which include many chemotherapy drugs. Meanwhile, the polymers, which exist in a watery solution, can carry hydrophilic molecules such as proteins, including antibodies and growth factors.
Long-term drug delivery
In this study, the researchers showed that the gels survived injection under the skin of mice and successfully released two drugs, one hydrophobic and one hydrophilic, over several days.
Read more: New nanogel for drug delivery
The Latest on: Nanogel for drug delivery
via Google News
The Latest on: Nanogel for drug delivery
- Nanobiotechnology-Based Strategies for Crossing the Blood–Brain Barrieron January 20, 2021 at 4:00 pm
Several NPs have been used for drug delivery by a variety of methods for various systems of the body, but only those relevant to the BBB will be described briefly in this section. One example of a ...
- Stimulus-responsive Macromolecules and Nanoparticles for Cancer Drug Deliveryon January 16, 2021 at 4:00 pm
Stimulus-responsive peptide and polymer vehicles can further enhance the efficacy of antitumor therapeutics compared with the administration of free drug by three mechanisms: increasing the ...
- Global Ocular Drug Delivery Market Overview, Delivery Technologies and Partnering Opportunities - ResearchAndMarkets.comon December 31, 2020 at 7:25 am
The "Ocular Drug Delivery: Market Overview, Delivery Technologies and Partnering Opportunities, 2nd edition" report has been added to ResearchAndMarkets.com's offering. Millions of people ...
- Resmini Group Researchon September 22, 2020 at 10:52 pm
In the field of drug delivery it is important to predict the in vivo behaviour ... Furthermore, we have designed and synthesised nanogel receptors that can be used in diagnostic sensors for a wide ...
- Life Sciences A - Zon August 13, 2020 at 12:25 pm
News-Medical talks to Dipanjan Pan about the development of a paper-based electrochemical sensor that can detect COVID-19 in less than five minutes.
- AKIYOSHI Bio-Nanotransporteron April 21, 2018 at 5:32 am
In this project, new bio-nanotransporters (bio-inspired nanoparticles) have been developed for new drug delivery systems (DDS) especially for such biologics to apply cancer immuno-therapies, vaccines ...
- Degradable Nanogel for Drug Deliveryon May 1, 2017 at 9:58 am
This technology relates to degradable nano-sized gels (nano-gels) for the delivery of drugs. The nanogels are made of a polymer that has a water-soluble polymer chain ...
- Nanogel tectonics engineeringon March 16, 2017 at 8:58 am
Self-assembled nanogels, which are one of the most beneficial nanocarriers for drug-delivery systems, are tectonically integrated to prepare nanogel-cross-linked (NanoClik) microspheres. From the ...
- River Hawk New Venture Fundon December 9, 2016 at 7:26 am
It’s making a polymer-based nanogel, which will help physicians administer targeted therapeutics. It will make drug delivery more precise, efficient and effective. Access Vascular Inc. Vascular access ...
- Degradable Nanogel for Drug Deliveryon February 27, 2012 at 2:05 pm
This technology relates to degradable nano-sized gels (nano-gels) for the delivery of drugs. The nanogels are made of a polymer that has a water-soluble polymer chain ...
via Bing News