
English: Guantanamo Bay, Cuba (Oct. 22, 2011) A view of solar panels being installed at Naval Station Guantanamo Bay, Cuba. The solar farm is being installed to provide electricity for the ongoing expansion of Denich Gym at the naval station’s Cooper Field sports complex. (U.S. Navy photo by Chief Mass Communication Specialist Bill Mesta/Released) (Photo credit: Wikipedia)
Environmentally friendly solar cell pushes forward the ‘next big thing in photovoltaics’
Northwestern University researchers are the first to develop a new solar cell with good efficiency that uses tin instead of lead perovskite as the harvester of light. The low-cost, environmentally friendly solar cell can be made easily using “bench” chemistry — no fancy equipment or hazardous materials.
“This is a breakthrough in taking the lead out of a very promising type of solar cell, called a perovskite,” said Mercouri G. Kanatzidis, an inorganic chemist with expertise in dealing with tin. “Tin is a very viable material, and we have shown the material does work as an efficient solar cell.”
Kanatzidis, who led the research, is the Charles E. and Emma H. Morrison Professor of Chemistry in the Weinberg College of Arts and Sciences.
The new solar cell uses a structure called a perovskite but with tin instead of lead as the light-absorbing material. Lead perovskite has achieved 15 percent efficiency, and tin perovskite should be able to match — and possibly surpass — that. Perovskite solar cells are being touted as the “next big thing in photovoltaics” and have reenergized the field.
Kanatzidis developed, synthesized and analyzed the material. He then turned to Northwestern collaborator and nanoscientist Robert P. H. Chang to help him engineer a solar cell that worked well.
“Our tin-based perovskite layer acts as an efficient sunlight absorber that is sandwiched between two electric charge transport layers for conducting electricity to the outside world,” said Chang, a professor of materials science and engineering at the McCormick School of Engineering and Applied Science.
Details of the lead-free solar cell will be published May 4 by the journal Nature Photonics. Kanatzidis and Chang are the two senior authors of the paper.
Their solid-state tin solar cell has an efficiency of just below 6 percent, which is a very good starting point, Kanatzidis said. Two things make the material special: it can absorb most of the visible light spectrum, and the perovskite salt can be dissolved, and it will reform upon solvent removal without heating.
“Other scientists will see what we have done and improve on our methods,” Kanatzidis said. “There is no reason this new material can’t reach an efficiency better than 15 percent, which is what the lead perovskite solar cell offers. Tin and lead are in the same group in the periodic table, so we expect similar results.”
Perovskite solar cells have only been around — and only in the lab — since 2008. In 2012, Kanatzidis and Chang reported the new tin perovskite solar cell with promises of higher efficiency and lower fabrication costs while being environmentally safe.
“Solar energy is free and is the only energy that is sustainable forever,” Kanatzidis said. “If we know how to harvest this energy in an efficient way we can raise our standard of living and help preserve the environment.”
The solid-state tin solar cell is a sandwich of five layers, with each layer contributing something important. Being inorganic chemists, Kanatzidis and his postdoctoral fellows Feng Hao and Constantinos Stoumpos knew how to handle troublesome tin, specifically methylammonium tin iodide, which oxidizes when in contact with air.
The first layer is electrically conducting glass, which allows sunlight to enter the cell. Titanium dioxide is the next layer, deposited onto the glass. Together the two act as the electric front contact of the solar cell.
Next, the tin perovskite — the light absorbing layer — is deposited. This is done in a nitrogen glove box — the bench chemistry is done in this protected environment to avoid oxidation.
On top of that is the hole transport layer, which is essential to close the electrical circuit and obtain a functional cell. This required Kanatzidis and his colleagues to find the right chemicals so as not to destroy the tin underneath. They determined what the best chemicals were — a substituted pyridine molecule — by understanding the reactivity of the perovskite structure. This layer also is deposited in the glove box. The solar cell is then sealed and can be taken out into the air.
A thin layer of gold caps off the solar-cell sandwich. This layer is the back contact electrode of the solar cell. The entire device, with all five layers, is about one to two microns thick.
The researchers then tested the device under simulated full sunlight and recorded a power conversion efficiency of 5.73 percent.
The Latest on: Perovskite
via Google News
The Latest on: Perovskite
- High temperatures and a diamond anvil could lead to a solar cell breakthroughon January 26, 2021 at 12:42 pm
There's still more work to be done, but this is an exciting breakthrough in materials science for better solar cells.
- Revealing the dynamic mechanism of lead-free quadruple perovskite nanocrystalson January 26, 2021 at 6:47 am
Researchers revealed the luminescence enhancement mechanism of a series of new lead-free quadruple halide perovskite nanocrystals, and prepared high-performance photodetectors.
- Scientists reveal dynamic mechanism of lead-free quadruple perovskite nanocrystalson January 26, 2021 at 5:04 am
In recent years, lead-free halide perovskite nanocrystals have drawn more and more attention due to their low toxicity, high stability and chemical diversity.
- Ba7Nb4MoO20-based materials with high oxygen-ion conductivity opening sustainable futureon January 25, 2021 at 10:02 am
Scientists at Tokyo Institute of Technology , Imperial and High Energy Accelerator Research Organization (KEK) Institute of Materials Structure Science, discover new Ba7Nb4MoO20-based materials with ...
- “Poking holes” in solar cells the secret to Aussie perovskite world recordon January 24, 2021 at 6:20 pm
Australian researchers have revealed the secret to a record-breaking perovskite solar cell design in a new paper, saying that poking holes in poorly conducting materials was key to improving ...
- Highly efficient perovskite light-emitting diodes for next-generation display technologyon January 23, 2021 at 9:00 pm
The research results were published in Nature Photonics, which is the world-renowned international academic journal, on January 4th (Title: Comprehensive defect suppression in perovskite nanocrystals ...
- Crystallization in one-step solution deposition of perovskite films: Upward or downward?on January 22, 2021 at 11:50 am
See allHide authors and affiliations Despite the fast progress of perovskite photovoltaic performances, understanding the crystallization and growth of perovskite films is still lagging. One ...
- Squashing Perovskite To Make It Stableon January 22, 2021 at 1:37 am
"Now that we've found this optimal way to prepare the material," she said, "there's potential for scaling it up for industrial production, and for using this same approach to manipulate other ...
- Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cellson January 21, 2021 at 1:06 pm
These authors contributed equally to this work. See allHide authors and affiliations In perovskite solar cells, the insulating nature of passivation layers needed to boost open-circuit voltage also ...
- A pinch of chili gives perovskites a kickon January 20, 2021 at 12:42 am
Scientists in China found that capsaicin, the natural compound responsible for a chili pepper’s spicy flavor, can also act as a ‘secret ingredient’ in perovskite solar cells, making them both more ...
via Bing News