An Allegheny mound ant in the laboratory. Image by Vienny Nguyen, courtesy of Ohio State University.
Ants can lift up to 5,000 times their own body weight, new study suggests
High hopes may help move a rubber tree plant (as the old song goes), but the real secret to the ant’s legendary strength may lie in its tiny neck joint.
In the Journal of Biomechanics, researchers report that the neck joint of a common American field ant can withstand pressures up to 5,000 times the ant’s weight.
“Ants are impressive mechanical systems—astounding, really,” said Carlos Castro, assistant professor of mechanical and aerospace engineering at The Ohio State University. “Before we started, we made a somewhat conservative estimate that they might withstand 1,000 times their weight, and it turned out to be much more.”
The engineers are studying whether similar joints might enable future robots to mimic the ant’s weight-lifting ability on earth and in space.
Other researchers have long observed ants in the field and guessed that they could hoist a hundred times their body weight or more, judging by the payload of leaves or prey that they carried. Castro and his colleagues took a different approach.
They took the ants apart.
“As you would in any engineering system, if you want to understand how something works, you take it apart,” he said. “That may sound kind of cruel in this case, but we did anesthetize them first.”
The engineers examined the Allegheny mound ant (Formica exsectoides) as if it were a device that they wanted to reverse-engineer: they tested its moving parts and the materials it is made of.
They chose this particular species because it’s common in the eastern United States and could easily be obtained from the university insectary. It’s an average field ant that is not particularly known for it’s lifting ability.
They imaged ants with electron microscopy and X-rayed them with micro-computed tomography(micro-CT) machines. They placed the ants in a refrigerator to anesthetize them, then glued them face-down in a specially designed centrifuge to measure the force necessary to deform the neck and eventually rupture the head from the body.
The centrifuge worked on the same principle as a common carnival ride called “the rotor.” In the rotor, a circular room spins until centrifugal force pins people to the wall and the floor drops out. In the case of the ants, their heads were glued in place on the floor of the centrifuge, so that as it spun, the ants’ bodies would be pulled outward until their necks ruptured.
The centrifuge spun up to hundreds of rotations per second, each increase in speed exerting more outward force on the ant. At forces corresponding to 350 times the ants’ body weight, the neck joint began to stretch and the body lengthened. The ants’ necks ruptured at forces of 3,400-5,000 times their average body weight.
Micro-CT scans revealed the soft tissue structure of the neck and its connection to the hard exoskeleton of the head and body. Electron microscopy images revealed that each part of the head-neck-chest joint was covered in a different texture, with structures that looked like bumps or hairs extending from different locations.
“Other insects have similar micro-scale structures, and we think that they might play some kind of mechanical role,” Castro said. “They might regulate the way that the soft tissue and hard exoskeleton come together, to minimize stress and optimize mechanical function. They might create friction, or brace one moving part against the other.”
Another key feature of the design seems to be the interface between the soft material of the neck and the hard material of the head. Such transitions usually create large stress concentrations, but ants have a graded and gradual transition between materials that gives enhanced performance—another design feature that could prove useful in man-made designs.
“Now that we understand the limits of what this particular ant can withstand and how it behaves mechanically when it’s carrying a load, we want to understand how it moves. How does it hold its head? What changes when the ant carries loads in different directions?”
One day, this research could lead to micro-sized robots that combine soft and hard parts, as the ant’s body does. Much work in robotics today involves assembling small, autonomous devices that can work together.
The Latest on: Robot design
via Google News
The Latest on: Robot design
- This robot-run fund with a history of predicting Tesla price moves has just made these stock pickson April 14, 2021 at 3:44 am
Do you think you can pick stocks better than a robot? An exchange-traded fund driven by artificial ... Shares in the maker of software and design tools, including AutoCAD, are more than 6% higher ...
- The Development of an Algorithm that Helps Soft Robots Understand Their Surroundingson April 14, 2021 at 2:14 am
Soft robot development could benefit from an algorithm that optimizes sensor placement allowing such machines to better ‘understand’ their environments.
- Carnegie Mellon University’s Biorobotics Lab Creates Robot That Can Swimon April 13, 2021 at 7:35 pm
A team from Carnegie Mellon University’s Biorobotics Lab created a robot that can swim. READ MORE: Police Looking For 2 Suspects Ac ...
- Award-winning innovation: Lafayette robotics team develops valuable skillset through competitionon April 13, 2021 at 6:00 pm
The silver robot does all of this seemingly on its own, either via programming written by students on the district robotics team or with direction from a student driver on a joystick. The two methods ...
- ‘Throw these things off bridges’: Footage of robot police dog sparks uneaseon April 13, 2021 at 4:01 pm
The New York Police Department (NYPD) is sparking unease online over its recent deployment of a "Spot" robot police dog.
- Rolling Robots Keeps Focus On Students Throughout Pandemicon April 13, 2021 at 11:25 am
"What we did with our teams that didn't go away, we increased our online sessions," which covered a variety of topics such as robot design and CAD (computer-aided design tool), Jiang said.
- Modular mobile robot can take on multiple roles at construction siteon April 13, 2021 at 9:33 am
The robot can also haul a payload of up to 500 ... for the mobile robot via a SDK interface, and the platform design could extend beyond the construction site to move into shipbuilding or aircraft ...
- AI and robotics tech team up for firefighterson April 13, 2021 at 9:10 am
The fact that this is such a huge advance points to an often misunderstood point about fire-fighting robots. Most people, when asked to think about the design limitations of such robots, will ...
- Researchers break new ground in 3D printed soft robotics with largest range of polymer hybridson April 13, 2021 at 7:48 am
In a study published in Applied Materials Today, researchers from Singapore have developed the largest range of silicone and epoxy hybrid resins for the 3D printing of wearable devices, biomedical ...
- Soft Robotics Expands mGrip™ Modular Gripping System with New Featureson April 13, 2021 at 6:35 am
Soft Robotics Inc. announced today the expansion of the mGrip Modular Gripping System with new capabilities and an IP69K rating to enable safe food handling of proteins and dairy products. These new ...
via Bing News