NTU scientists make breakthrough solar technology: Unique material is far cheaper to produce and generates almost as much power as today’s thin film solar cells
This next generation solar cell, made from organic-inorganic hybrid perovskite materials, is about five times cheaper than current thin-film solar cells, due to a simpler solution-based manufacturing process.
Perovskite is known to be a remarkable solar cell material as it can convert up to 15 per cent of sunlight to electricity, close to the efficiency of the current solar cells, but scientists did not know why or how, until now.
In a paper published last Friday (18 Oct) in the world’s most prestigious academic journal, Science, NTU’s interdisciplinary research team was the first in the world to explain this phenomenon.
The team of eight researchers led by Assistant Professor Sum Tze Chien and Dr Nripan Mathews had worked closely with NTU Visiting Professor Michael Grätzel, who currently holds the record for perovskite solar cell efficiency of 15 per cent, and is a co-author of the paper. Prof Grätzel, who is based at the Swiss Federal Institute of Technology in Lausanne (EPFL), has won multiple awards for his invention of dye-sensitised solar cells.
The high sunlight-to-electricity efficiency of perovskite solar cells places it in direct competition with thin film solar cells which are already in the market and have efficiencies close to 20 per cent.
The new knowledge on how these solar cells work is now being applied by the Energy Research Institute @ NTU(ERI@N), which is developing a commercial prototype of the perovskite solar cell in collaboration with Australian clean-tech firm Dyesol Limited (ASX: DYE).
Asst Prof Sum said the discovery of why perovskite worked so well as a solar cell material was made possible only through the use of cutting-edge equipment and in close collaboration with NTU engineers.
“In our work, we utilise ultrafast lasers to study the perovskite materials. We tracked how fast these materials react to light in quadrillionths of a second (roughly 100 billion times faster than a camera flash),” said the Singaporean photophysics expert from NTU’s School of Physical and Mathematical Sciences.
“We discovered that in these perovskite materials, the electrons generated in the material by sunlight can travel quite far. This will allow us to make thicker solar cells which absorb more light and in turn generate more electricity.”
The NTU physicist added that this unique characteristic of perovskite is quite remarkable since it is made from a simple solution method that normally produces low quality materials.
His collaborator, Dr Nripan Mathews, a senior scientist at ERI@N, said that their discovery is a great example of how investment in fundamental research and an interdisciplinary effort, can lead to advances in knowledge and breakthroughs in applied science.
“Now that we know exactly how perovskite materials behave and work, we will be able to tweak the performance of the new solar cells and improve its efficiency, hopefully reaching or even exceeding the performance of today’s thin-film solar cells,” said Dr Mathews, who is also the Singapore R&D Director of the Singapore-Berkeley Research Initiative for Sustainable Energy (SinBeRISE) NRF CREATE programme.
“The excellent properties of these materials, allow us to make light weight, flexible solar cells on plastic using cheap processes without sacrificing the good sunlight conversion efficiency.”
Professor Subodh Mhaisalkar, the Executive Director of ERI@N said they are now looking into building prototype solar cell modules based on this exciting class of materials.
Go deeper with Bing News on:
Breakthrough solar technology
- MIT Scientists Invent Cheap Solar Panels That Can be Printed Like Newspaper
Researchers at the Massachusetts Institute of Technology (MIT) have made a significant breakthrough in solar technology by creating ultra-thin solar ...
- What's The Next Great Technological Breakthrough After AI?
Artificial intelligence (AI) has been one of the most significant technological advancements of the 21st century. However, as innovative as AI is, its potential is still being explored and developed.
- Solar Energy News
In order to make this technology ready for the market ... enough to withstand real-world ... Pivotal Breakthrough in Adapting Perovskite Solar Cells for Renewable Energy Oct. 20, 2023 — A ...
- Ten energy storage technologies that want to change the world
As COP28 calls for a tripling of renewable energy, storage technologies beyond the lithium-ion battery will play key roles. Recharge rounds up 10 of the most in ...
- Solar Technology Trends to Watch in 2024
The solar photovoltaic (PV) industry is currently witnessing unparalleled expansion. Solar technologies are advancing. Find out the trends in solar technology for 2024.
Go deeper with Google Headlines on:
Breakthrough solar technology
[google_news title=”” keyword=”Breakthrough solar technology” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]
Go deeper with Bing News on:
Microplastics in water
- From creeks to clouds: The invisible invasion of microplastics
Judging by recent developments, microplastics have risen to the status of supervillain. Reports about these new anti-heros read almost like celebrity sightings. The tiny particles are everywhere: in ...
- New Robot Mimics Snail to Collect Microplastics from Oceans
Motivated by the deliberate and measured pace of a diminutive snail, scientists have created a prototype robot with the potential to adeptly collect microplastics from the surfaces of oceans, seas, ...
- Video: A snail-inspired robot promises to vacuum up microplastics from bodies of water
Researchers from Cornell University have developed a snail-inspired robot that promises to one day scoop microplastics from bodies of water.
- LifeStraw’s Personal Water Filter Is Just $10 Today
As well as bacteria and parasites, the filter removes microplastics, which we could all probably do with less of. It will also last for years, purifying approximately 1,000 gallons of water before it ...
- Snail-Inspired Robot Could Scoop Up Ocean Microplastics
Currently, plastic collection devices mostly rely on drag nets or conveyor belts to gather and remove larger plastic debris from water, but they lack the fine scale required for retrieving ...
Go deeper with Google Headlines on:
Microplastics in water
[google_news title=”” keyword=”microplastics in water” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]