Professor Weimin Chen and his colleagues at Linköping University, in cooperation with German and American researchers, have succeeded in both initializing and reading nuclear spins, relevant to qubits for quantum computers, at room temperature.
A quantum computer is controlled by the laws of quantum physics; it promises to perform complicated calculations, or search large amounts of data, at a speed that exceeds by far those that today’s fastest supercomputers are capable of.
“You could say that a quantum computer can think several thoughts simultaneously, while a traditional computer thinks one thought at a time,” says Weimin Chen, professor in the Division of Functional Electronic Materials at the Department of Physics, Chemistry and Biology at LiU, and one of the main authors of the article in Nature Communications.
A traditional computer stores, processes and sends all information in the form of bits, which can have a value of 1 or 0. But in the world of quantum physics, at the nano- and atomic level, other rules prevail and a bit in a quantum computer – a qubit – can have any value between 1 and 0. A spin-based qubit makes use of the fact that electrons and atomic nuclei rotate around their own axes – they have a spin. They can rotate both clockwise and counterclockwise (equivalent to 1 and 0), and in both directions simultaneously (a mix of 1 and 0) – something that is completely unthinkable in the traditional, “classical” world.
An atomic nucleus consists of both protons and neutrons, and the advantage of using the nuclear spin as a qubit is that the nucleus is well protected, and nearly impervious to unwanted electromagnetic disturbance, which is a condition for keeping the sensitive information in the qubit intact.
The first step in building a quantum computer is to assign each qubit a well-defined value, either 1 or 0. Starting, or initiating, the spin-based qubits then requires all the atomic nuclei to spin in the same direction, either ‘up’ or ‘down’ (clockwise or counterclockwise). The most common method for polarising nuclear spin is called dynamic nuclear polarisation; this means that the electrons’ spin simply influences the nucleus to spin in the same direction. The method requires strongly spin polarised electrons and functions superbly at lower temperatures. Dynamic nuclear polarisation via conduction electrons has, however, not yet been demonstrated at room temperature – which is crucial for the method to be useful in practice for the development of quantum computers. The main problem is that the spin orientation in the electrons can easily be lost at room temperature, since it is sensitive to disruptions from its surroundings.
Linköping University researchers Yuttapoom Puttisong, Xingjun Wang, Irina Buyanova and Weimin Chen, together with their German and American colleagues, have now discovered a way of getting around this problem.
The Latest Bing News on:
Quantum computer
- University of Glasgow Partners with Oxford Instruments NanoScience on Quantum Computingon January 21, 2021 at 9:01 am
Today, the University of Glasgow, a pioneering institution in quantum technology development and home of the Quantum Circuits Group, ...
- Researchers improve data readout by using 'quantum entanglement'on January 21, 2021 at 6:24 am
Researchers say they have been able to greatly improve the readout of data from digital memories—thanks to quantum entanglement.
- China: The Quantum Competition We Can’t Ignoreon January 21, 2021 at 5:20 am
With the talents of companies like IBM, Intel, Toshiba, JPMorgan and Goldman Sachs reporting a steady stream of quantum innovations, the fight isn’t over.
- Less is more: IBM achieves quantum computing simulation for new materials with fewer qubitson January 20, 2021 at 11:11 pm
IBM researchers achieved better simulation of molecules that could be used to design new materials, without the need for more qubits.
- Global Quantum Computing Market – Industry Analysis and Forecast (2022-2031)on January 20, 2021 at 8:54 pm
Global 2021 Quantum Computing Market Recapitulation by 2031 A futuristic comprehensive insight of applications and statistical challenges of the Quantum Computing market is recently added by Market.us ...
- How Quantum Computers Could Usher In a Golden Age of Computing Poweron January 20, 2021 at 9:20 am
Quantum engineering Quantum computers could usher in a golden age of computing power, solving problems intractable on today’s machines. Since the 1940s, classical computers have improved at breakneck ...
- One-dimensional quantum nanowires fertile ground for Majorana zero modeson January 19, 2021 at 9:20 am
One-dimensional quantum 'nanowires' - which have length, but no width or height - provide a unique environment for the formation and detection of a quasiparticle known as a Majorana zero mode, which ...
- Aker BP and Cambridge Quantum Computing to Develop Quantum Machine Learning for Energyon January 19, 2021 at 7:20 am
Cambridge Quantum Computing (“CQC”) is pleased to announce the results of their work with one of Europe’s largest ...
- Transforming quantum computing’s promise into practiceon January 18, 2021 at 9:17 pm
MIT electrical engineer William D. Oliver develops the fundamental technology to enable reliable quantum computers at scale. His work could help vastly improve how computers process information and ...
- Scientists' discovery is paving the way for novel ultrafast quantum computerson January 15, 2021 at 8:36 am
Scientists at the Institute of Physics of the University of Tartu have found a way to develop optical quantum computers of a new type. Central to the discovery are rare earth ions that have certain ...
The Latest Google Headlines on:
Quantum computer
The Latest Bing News on:
Quantum Computing
- University of Glasgow Partners with Oxford Instruments NanoScience on Quantum Computingon January 21, 2021 at 9:01 am
Today, the University of Glasgow, a pioneering institution in quantum technology development and home of the Quantum Circuits Group, ...
- Researchers improve data readout by using 'quantum entanglement'on January 21, 2021 at 6:24 am
Researchers say they have been able to greatly improve the readout of data from digital memories—thanks to quantum entanglement.
- China: The Quantum Competition We Can’t Ignoreon January 21, 2021 at 5:20 am
With the talents of companies like IBM, Intel, Toshiba, JPMorgan and Goldman Sachs reporting a steady stream of quantum innovations, the fight isn’t over.
- Less is more: IBM achieves quantum computing simulation for new materials with fewer qubitson January 20, 2021 at 11:11 pm
IBM researchers achieved better simulation of molecules that could be used to design new materials, without the need for more qubits.
- Global Quantum Computing Market – Industry Analysis and Forecast (2022-2031)on January 20, 2021 at 8:54 pm
Global 2021 Quantum Computing Market Recapitulation by 2031 A futuristic comprehensive insight of applications and statistical challenges of the Quantum Computing market is recently added by Market.us ...
- How Quantum Computers Could Usher In a Golden Age of Computing Poweron January 20, 2021 at 9:20 am
Quantum engineering Quantum computers could usher in a golden age of computing power, solving problems intractable on today’s machines. Since the 1940s, classical computers have improved at breakneck ...
- One-dimensional quantum nanowires fertile ground for Majorana zero modeson January 19, 2021 at 9:20 am
One-dimensional quantum 'nanowires' - which have length, but no width or height - provide a unique environment for the formation and detection of a quasiparticle known as a Majorana zero mode, which ...
- Aker BP and Cambridge Quantum Computing to Develop Quantum Machine Learning for Energyon January 19, 2021 at 7:20 am
Cambridge Quantum Computing (“CQC”) is pleased to announce the results of their work with one of Europe’s largest ...
- Transforming quantum computing’s promise into practiceon January 18, 2021 at 9:17 pm
MIT electrical engineer William D. Oliver develops the fundamental technology to enable reliable quantum computers at scale. His work could help vastly improve how computers process information and ...
- Scientists' discovery is paving the way for novel ultrafast quantum computerson January 15, 2021 at 8:36 am
Scientists at the Institute of Physics of the University of Tartu have found a way to develop optical quantum computers of a new type. Central to the discovery are rare earth ions that have certain ...